
wait() and notify()

Two dependent threads

▪ Sometimes we have the situation that a thread has to wait until another

thread has done a specific action. Example:

• Thread 1 (T1) is a camera that continuously takes pictures

• Thread 2 (T2) runs an algorithm to compress pictures

▪ Wrong way to implement that:

▪ This doesn’t work if T1 and T2 work at different speeds. We want:

• If there is no new picture, T2 should wait.

• T1 should not make pictures faster than T2 can compress them

// Variable accessed by both threads
Picture picture;

// T1:
while(true) {

picture = takePhoto();
}

// T2:
while(true) {

CompressedPicture p=compress(picture);
writePictureToFile(p);

}

Solution with while-loops

▪ Our idea: When T2 starts compressing a picture it sets the picture

variable to null to indicate to T1 that the next photo can be taken. If

there is no picture, T2 waits.

▪ Here is a bad implementation:

// T2:
while(true) {

while(picture==null) { } // wait for T2
Picture currentPicture = picture; // get picture from T2
picture = null; // tell T1 to continue

CompressedPicture p=compress(currentPicture);
p.writeToFile();

}

// T1:
while(true) {

Picture currentPicture =takePhoto();
while(picture!=null) { } // wait for T1
picture = currentPicture; // give the picture to T2

}

Not good! This is called “busy

waiting”. The computer is

working and working... but not

doing anything.

// Code for T2:
while(true) {

Picture currentPicture;
synchronized(someObject) {

while(picture==null) {
try {

someObject.wait();
}
catch(InterruptedException e) { throw new RuntimeException(“...", e); }

}
currentPicture=picture;
picture=null;
someObject.notify();

}

CompressedPicture p=compress(currentPicture);
p.writeToFile();

}

Correct code

// Code for T1
while(true) {

Picture currentPicture = takePhoto();
synchronized(someObject) {

while(picture!=null) {
try {

someObject.wait();
}
catch(InterruptedException e) { throw new RuntimeException(“...", e); }

}
picture = currentPicture;
someObject.notify();

}
}

If picture!=null, task T1 sleeps until

it gets a notification from T2

Here, we notify T2 that a new

picture is ready

All access to the picture

variable is inside the

synchronized statement

If picture==null, task T2 waits

until it gets a notification from T1

Here, we notify T1 that it can

give T2 a new picture

wait() and notify()

▪ The wait() method puts the calling thread to sleep until another thread

calls notify() on the same object (or if an InterruptedException happens)

▪ When waking up from a wait(), you should always check whether the

condition you were waiting for is fulfilled. It could be that the thread has

been waken up by accident. In our example, we have put wait() inside a

while-loop to be sure that picture!=null in T1:

while(picture!=null) {
try {

someObject.wait();
}
catch(InterruptedException) { throw new RuntimeException(“...", e); }

}

Multiple threads waiting

▪ It’s possible that multiple threads wait at the same time for the same

object

• In that case, notify() will randomly choose one waiting thread

• Alternatively, you can wake up all waiting threads with notifyAll()

▪ Example:

• T1 has two cameras and produces two pictures at the same time

• Two threads T2 and T3 wait to compress pictures

• T1 can use notifyAll() to wake up both threads T2 and T3 at the same
time

▪ A thread can only call wait() or notify() on an object if it owns the

monitor of the object, i.e. wait() and notify() must be always inside a

synchronized block

▪ When a thread calls wait(), the thread releases the monitor

▪ When a waiting thread is waken up, it waits until the thread that called

notify() releases the monitor

▪ Example: Let’s assume T1 first gets the monitor of someObject

1. T1 calls wait() and releases the monitor of someObject

2. T2 can enter the monitor and calls notify()

3. T1 has to wait until T2 leaves the monitor

4. When T2 has left, T1 can execute i++

// T1:
synchronized(someObject) {

someObject.wait();
i++;

}

Synchronization and wait() and notify()

// T2:
synchronized(someObject) {

someObject.notify();
}

Producer-Consumer

▪ Our picture example is called a Producer-Consumer problem

▪ Sometimes, you will have multiple producers and consumers. In that

case, having a variable for only one picture does not make sense.

Instead, a buffer (a list, an array, a queue,...) is used. Often, you want to

limit the size of the buffer, so it doesn’t become too large.

Producer

(thread 1)
Picture picture;

Consumer

(thread 2)

Producer

(thread 2)
list with space for

10 pictures;

Consumer

(thread 5)

Producer

(thread 1)

Producer

(thread 3)

Consumer

(thread 4)

Consumer

(thread 6)

wait until picture!=null

wait until list is not empty:

remove picture from list
wait until list is not full:

add picture to list

wait until picture==null

