
Lambda expressions in Java

Again our example application

public class AppWithAnonymousClass {
private void run() {

JFrame frame=new JFrame("Hello");
[...]

JButton button=new JButton("Press me!");
button.addActionListener(new ActionListener() {

@Override
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(frame,"Thank you! "+e.getModifiers());
}

});
frame.add(button);

frame.setVisible(true);
}

public static void main(String[] args) {
[...]

}
}

public interface ActionListener extends EventListener {
public void actionPerformed(ActionEvent e);

}

The ActionEvent object contains

information about what has

happened. For example, I can

see whether the Shift-Key or the

Control-Key have been pressed.

What do we notice?

▪ Let’s look again at the code of our ActionListener object:

▪ We can notice something interesting:

• Our ActionListener object is a very stupid object. It only has one
method and it doesn’t have members.

• It’s only there because we wanted to tell the button to execute this
line of code if the button is pressed:

▪ Is there an easier way?

button.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(frame,"Thank you!"+e.getModifiers());
}

});

JOptionPane.showMessageDialog(frame,"Thank you!"+e.getModifiers());

Lambda Expressions

▪ Since Java 8, we can write

simply like this:

▪ Again, this is syntactic sugar. But the idea behind an ActionListener

becomes much clearer by using lambda expressions:

“An ActionListener is a function 𝑓: 𝐴𝑐𝑡𝑖𝑜𝑛𝐸𝑣𝑒𝑛𝑡 → 𝑉𝑜𝑖𝑑 that is

executed when a button is pressed”

button.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(frame,"Thank you!"+e.getModifiers());
}

});

JButton button=new JButton("Press me!");
button.addActionListener(

(ActionEvent e) -> JOptionPane.showMessageDialog(frame,"Thank you!")
);

This is called a

lambda expression

Lambda Expressions

▪ A Lambda expression consists of two parts:

▪ A Lambda expression can also have a result. This lambda expression is

equivalent to the function 𝑓 𝑥, 𝑦 = 𝑥 + 𝑦 with 𝑥 ∈ ℤ:

▪ You can also have a block of statements on the right side. In that case,

you have to use “return” for the result:

(ActionEvent e) -> JOptionPane.showMessageDialog(frame,"Thank you!")

One or more

parameters
An expression

(int x, int y) -> x+y

(int i) -> { int j=i*2; return j+1; }

Functions as objects

▪ Lambda expressions can be used whenever there is an interface with

one abstract method (called a Functional Interface)

interface MyFunction {
public double calculate(double d);

}

public class FunctionExample {
public static double execute(MyFunction function, double d) {

return function.calculate(d);
}

public static void main(String[] args) {
MyFunction mySquareRootFunction = (double d) -> Math.sqrt(d);
double rootOfFive = mySquareRootFunction.calculate(5.0);
double rootOfSeven = mySquareRootFunction.calculate(7.0);

MyFunction myIncrementFunction = (d) -> d+1.0;
double fivePlusOne = execute(myIncrementFunction, 5.0);

}
}

This is a functional

interface. It has only one

abstract method.

A method that takes a

function as parameter

We don’t have to

specify the type of

the parameter

explicitly if it is clear

from the interface

definition

▪ The JDK has already defined some useful functional interfaces:

• Interface Function<T,R> for functions of type 𝑇 → 𝑅

We can rewrite our example

MyFunction mySquareRootFunction = (d) -> Math.sqrt(d);

double rootOfFive = mySquareRootFunction.calculate(5.0);

as

• Interface BiFunction<T,U,R> for functions of type 𝑇 × 𝑈 → 𝑅

• Interface Predicate<T> for functions of type 𝑇 → 𝑏𝑜𝑜𝑙𝑒𝑎𝑛

BiFunction<Integer,Integer,Integer> sum = (i1,i2) -> i1+i2;
int r = sum.apply(3,5);

Package java.util.function

Function<Double,Double> f = (d) -> Math.sqrt(d);
double r = mySquareRootFunction.apply(5.0);

Predicate<Integer> testZero = (i) -> i==0;
boolean isZero = testZero.test(5);

Function composition

▪ We can combine functions to create new functions

• Let 𝑓: 𝑇 → 𝑅 and 𝑔: 𝑉 → 𝑇

• We can define a new function ℎ: 𝑉 → 𝑅 with ℎ 𝑥 = 𝑓(𝑔 𝑥)

▪ The Java interface Function<T,R> has already a compose method that

does exactly this:

▪ Example:

Function<V, R> compose(Function<V,T> g) {
return (V v) -> apply(g.apply(v));

}

Function<Double, Double> f = (d) -> d/2.5;
Function<Integer, Double> g = (i) -> Math.sqrt(i);
Function<Integer, Double> h = f.compose(g);
double r = h.apply(25);

The Comparator Interface (in java.util)

▪ Interface Comparator<T> for functions 𝑇 × 𝑇 → 𝑖𝑛𝑡 that

return an integer ൞
< 0, 𝑖𝑓 𝑓𝑖𝑟𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 < 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡
0, 𝑖𝑓 𝑓𝑖𝑟𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 = 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡
> 0, 𝑖𝑓 𝑓𝑖𝑟𝑠𝑡 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡 > 𝑠𝑒𝑐𝑜𝑛𝑑 𝑎𝑟𝑔𝑢𝑚𝑒𝑛𝑡

▪ Example (from stackoverflow):

Comparator<Duck> byWeight = (d1,d2) -> d1.getWeight() - d2.getWeight();

▪ The Comparator interface is used in a lot of Java libraries. For example,

there is the static method sort from the class java.util.Arrays:

▪ Thanks to the Comparator interface it’s very easy to change the sort

order simply by defining the comparator function differently:

Comparator<Duck> byWeight = (d1,d2) -> d2.getWeight() – d1.getWeight();

▪ There is also a similar sort method for lists in java.util.Collections

Duck[] ducks = new Duck[]{ duck1, duck2, duck3 };
Arrays.sort(ducks, byWeight);

Immutable data structures

▪ Remember that lambda expressions in Java are implemented as

anonymous inner classes. They are allowed to access members of the

outer class:

▪ Howver, this kind of code should be avoided. In mathematics, we expect

that a function always gives the same result for the same argument.

▪ A good function should not have side effects. A function should not

change existing objects and variables. The code of a function or method is

easier to understand if the result only depends on its arguments.

public class SideEffect {
int sum=0;

public void run() {
Function<Integer,Integer> add=(i) -> { sum++; return i+sum; };

System.out.println(add.apply(3));
System.out.println(add.apply(3));

}
}

Programming without side effects

Side effect

Programming without side effects (2)

▪ Is it possible to write programs only with code that has no side effects?

▪ For example, how can we write the method addElement of a class List

as a function?

▪ Is it possible to add an element to a list without modifying the list???

class List {
...
void addElement(Element e);

}

A list without side effects

▪ We can implement a list without side effects as a linked list:

▪ We can add an element to the head of a list without changing the list:

Note that list1 and list2 are still the same lists!

▪ Such a data structure is called immutable. It cannot be changed after

creation. By the way, String objects in Java are immutable, too!

class Cons {
public final int value; // value of the element
public final Cons next; // next element, null if end of list

public Cons(int value, Cons next) {
this.value = value;
this.next = next;

}
}

Cons list1 = new Cons(3,null); // this is the list [3]
Cons list2 = new Cons(5,list1); // this is the list [5,3]
Cons list3 = new Cons(1,list2); // this is the list [1,5,3]

Working with an immutable list

▪ Since an immutable list cannot be changed, we have to create a new list

if we want to change list content

▪ Here is a recursive method that increments all elements of a list by

three:

▪ Let’s what happens if we use it on the list [1,5]:

increment(Cons(1, Cons(5, null)))

→ Cons(4, increment(Cons(5, null)))

→ Cons(4, Cons(8, increment(null)))

→ Cons(4, Cons(8, null))

public static Cons increment(Cons list) {
if(list==null)

return null;
else

return new Cons(list.value+3, increment(list.next));
}

Cons(x,y) means here:

a Cons object with

value=x and next=y

Note: This is not very

efficient code because

it’s not tail recursive.

Exercise on INGInious

▪ In the INGInious exercises, we ask you to implement a map method and

a filter method for an immutable Cons list:

• The map method takes a function 𝑓: 𝑖𝑛𝑡 → 𝑖𝑛𝑡 and applies it to all
elements of a list. That means map with a function 𝑓 𝑥 = 𝑥 + 1 on
the list [1,2,3] should give as result a new list [2,3,4]

• The filter method takes a predicate 𝑝: 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 and applies it
to all elements of a list. The result is a new list with all elements for
which 𝑝 𝑥 = 𝑡𝑟𝑢𝑒

Example: filter with 𝑝 𝑥 = 𝑥 < 3 on the list [7,2,1,8] should give a
new list [2,1]

▪ First do the Map/Filter/Cons exercise for lists only containing int values.

Then do the exercise with Generics for lists with other value types.

