
Software Testing



Testing

▪ Testing = Executing software with test input and checking whether it

does what we want

▪ Example:

• We have the program “division.exe”

• What we want: the program should print the quotient of two 
numbers

▪ Let’s test it:

>  division.exe  6  3

2 

>  division.exe  12  3

4

>  division.exe  4  0

Exception in line 5: Division by zero

good✓

good✓

bad? 



Testing (2)

▪ Obviously,  we can only write and test a program if we know what it

should do

▪ Different possibilities to specify what a program should do

1. Formal specification:

𝑑𝑖𝑣𝑖𝑠𝑖𝑜𝑛 𝑎, 𝑏 = ቐ

𝑎

𝑏
, 𝑖𝑓 𝑏 ≠ 0

𝑒𝑟𝑟𝑜𝑟, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
2. Specification document:

“The program should print the quotient of …”

3. User requirement:

“The user wants a calculator”



Functional vs non-functional tests

▪ Tests can be done to check whether a program satisfies functional

requirements or non-functional requirements

▪ Examples for functional requirements:

• "The program should calculate 𝑎/𝑏"

• "The program should sort a list"

• "The program should print all prime numbers"

• …

▪ Examples for non-functional requirements:

• "The program should have complexity 𝑂(𝑛)“

• “The program should be written in Java”

• "The program should be easy to use"

• "The program should not contain a virus"

• …



Finding input values for tests

▪ To test whether a program fulfills the requirements, we have to test it 

with input values from its input domain

• In our “division.exe” example, the input domain is ℤ × ℤ

▪ Do we have to test all possible input values?

• Hopefully not! We expect that if division.exe works for 𝑎 = 5, b = 7
it will also work for 𝑎 = 12, 𝑏 = 25

▪ So, our approach to find useful input values for our tests is:

1. Look at the input domain of the program
ℤ × ℤ

2. Split the input domain into interesting sub-domains

Two sub-domains:    𝑎 ∈ ℤ, 𝑏 ∈ ℤ ∖ {0} and   𝑎 ∈ ℤ, 𝑏 = 0

3. Choose test input values from each sub-domain:

𝑎 ∈ ℤ, 𝑏 ∈ ℤ ∖ {0} → 𝑎 = 5, 𝑏 = 7
𝑎 ∈ ℤ, 𝑏 = 0 → 𝑎 = 3, 𝑏 = 0



Quiz (Answer on the next slide)

▪ Let‘s say you want to test the following method:

int[] sortArray(int[] array)

a) What is the input domain?

b) What are possible sub-domains of the input domain?



Answer

▪ Let‘s say you want to test the following method:

int[] sortArray(int[] array)

a) What is the input domain?

ℤ𝑛 𝑤ℎ𝑒𝑟𝑒 𝑛 ∈ ℕ 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑎𝑟𝑟𝑎𝑦

b) What are possible sub-domains of the input domain?

1. Empty array (𝑛 = 0)

2. Array with one element (𝑛 = 1)

3. Unsorted array with 𝑛 > 1

4. Array already sorted in ascending order with 𝑛 > 1

5. Array already sorted in descending order with 𝑛 > 1

It’s always good to have disjoint sub-domains that cover the entire input 

domain!



We can test a program at different levels

▪ Unit testing = testing a single method

“Does the method give the correct result?”

▪ Module testing = testing a module (in Java: module ≈ class)

“Does the class work correctly? Does it have the required methods?”

▪ Integration testing = testing several modules together

“Do the modules work together correctly? Do all modules have the
right methods? Do the modules use the methods of the other modules
correctly?”

▪ System testing = testing the entire system or program

“Does the system follow the specification?”

▪ Acceptance testing = testing at the customer

“Does software do what the user wants?”



Who does the tests?

▪ Unit and module tests

The author of the unit or module

▪ Integration tests

• Done by the developer team

▪ System test

• Done by the test team

▪ Acceptance test

• Done by the customer or by people who know what the customer 
needs (“domain knowledge”)



Test levels

▪ Unit testing

▪ Module testing

▪ Integration testing

▪ System testing

▪ Acceptance testing

Tests can be done very

early (as soon as you

have written a method) 

and frequently

Tests are difficult: The 

software has to be

installed, users have

to “play“ with it,…

Test difficulty If you find a

bug…

Very easy to fix

Very expensive to fix


