
Streams

Streams

▪ Applying functions to lists of objects is so popular, that Java 8 has some

special classes for this: Stream, BasicStream, IntStream,...

• A stream is a sequence of objects

▪ Like our FList, there are many useful operations defined for streams, like

map, filter,...

▪ Example:

▪ Remember that streams are a concept from functional programming. In

general, stream operations don’t/shouldn’t have side effects.

Stream<Integer> stream=Stream.of(1,2,3,4,5);

Stream<Integer> mappedStream=stream.map((i)->i+1);

Creating streams

class Account {
private int value;
public Account(int value) { this.value=value; }
public int getValue() { return value; }

}

// Create streams from values
Stream<Integer> stream1=Stream.of(1,2,3,4,5);
Stream<Account> stream2=Stream.of(new Account(100), new Account(200));

// Create a stream from an array.
// For base types (like int and double), Java has optimized stream
// implementations. In general, it is more efficient to use a DoubleStream
// instead of Stream<Double>
double[] a=new double[]{ 1.0, 2.0, 3.0 };
DoubleStream stream3=Arrays.stream(a);

// Create a stream from a list
LinkedList<Integer> list=new LinkedList<>();
list.add(3); list.add(4);
Stream<Integer> stream4=list.stream();

Working with streams

▪ Check the documentation of the Stream class and the special versions

(IntStream, DoubleStream,...) to see what operations exist! There are

many useful ones

Stream<Integer> stream1=Stream.of(1,2,3,4,5);

// apply function on each element
Stream<Integer> mappedStream=stream1.map((i)->i+1);

// filter elements
Stream<Integer> filteredStream=mappedStream.filter((i)->i<4);

// sort stream
Stream<Integer> sortedStream=filteredStream.sorted();

// transform object stream into IntStream
Stream<Account> stream2=Stream.of(new Account(100), new Account(200));
IntStream intStream=stream2.mapToInt((a)->a.getValue());

Getting the data out of a stream

▪ When working with streams, usually the last operation is an operation

that returns some result that is not a stream

▪ Examples:

• Counting all elements greater than 5:

• Transforming the stream into an array:

• Doing something with each element:

This is like a map-operation, but it does not have a result.

int n=stream.filter((i)->i>5).count();

Stream<Account> stream=Stream.of(new Account(100), new Account(200));
int[] values=stream.mapToInt((a)->a.getValue()).toArray();

Stream<String> stream = Stream.of("Hello", "World");
stream.forEach((s)-> System.out.println(s));

Reduce

▪ Often, we want to do an operation with all elements of a stream and

calculate a single result value. For example, we want to calculate the

sum of all elements in a stream with integers:

▪ For this, we can use the reduce method:

▪ Reduce needs two arguments:

• A start value 𝑠 for the reduction operation (Here: 𝑠 = 0)

• A function 𝑓 that is applied on the elements 𝑒1, 𝑒2, … , 𝑒𝑛 as follows:
𝑟1 = 𝑓 𝑠, 𝑒1
𝑟2 = 𝑓 𝑟1, 𝑒2
𝑟3 = 𝑓 𝑟2, 𝑒3

…
𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑓(𝑟𝑛−1, 𝑒𝑛)

Stream<Integer> stream = Stream.of(1,2,3,4,5);
int result = stream.reduce(0, (a,b)->a+b);

A shorter way to use methods in lambda

expressions

▪ The line

can be written shorter as:

▪ This also works with methods with more than one parameter. The line

can be written as:

stream.forEach((s)-> System.out.println(s));

stream.forEach(System.out::println);

BiFunction<String,Integer,PrintStream> f = (s,i)->System.out.format(s,i);

BiFunction<String,Integer, PrintStream> f = System.out::format;

The object The method

A shorter way to use methods in lambda

expressions (2)

▪ The notation with “::” can be also used without an object. The line

can be written as:

▪ This even works with constructors! This line

can be written as:

Stream<Integer> stream= Stream.of("Hello", "World").map((s)-> s.length());

Stream<Integer> stream= Stream.of("Hello", "World").map(String::length);

The class The method

Stream<Account> stream = Stream.of(1,2,3,4,5).map((i)-> new Account(i));

Stream<Account> stream = Stream.of(1,2,3,4,5).map(Account::new);

A shorter way to use methods in lambda

expressions (3)

▪ The notation with “::” also works with static methods. Example:

▪ The Integer class defines a static method “sum” that calculates the sum

of two integers

▪ Instead of

we can write:

public static int sum(int a, int b) {
return a + b;

}

Stream<Integer> stream = Stream.of(1,2,3,4,5);
int n = stream.reduce(0, (a,b)->a+b);

Stream<Integer> stream = Stream.of(1,2,3,4,5);
int n = stream.reduce(0, Integer::sum);

The class
The static

method

A complete example

▪ Our task: Take a list of amounts, add 5%, and create accounts for them

▪ Note:

• The map method of Stream returns a Stream. Use mapToInt to
return an IntStream.

• The map method of IntStream returns an IntStream. Use mapToObj
to return a Stream.

Stream<Account> a = Stream.of(100,200,300)

.map((i)-> i*1.05)

.mapToInt(Double::intValue)

.mapToObj(Account::new);

returns an IntStream (the

optimized version of

Stream<Integer>)

returns a

Stream<Double>

creates a

Stream<Integer>

returns a stream with new

account objects

Streams are lazy!

▪ What will this code print?

▪ You could think that the code does the following:

1. A stream with elements 1,2,3,4,5 is created

2. The function (i)->{ System.out.println(i); return i+1; } is
applied on each element

3. A new stream with 2,3,4,5,6 is returned

▪ However, this is wrong! The above code does not print anything.

Streams are lazy. The operations are only executed if the result is

needed, for example to calculate a result:

Stream<Integer> s1 = Stream.of(1,2,3,4,5);
Stream<Integer> s2 = s1.map((i)-> { System.out.println(i); return i+1; });

Stream<Integer> s1 = Stream.of(1,2,3,4,5);
Stream<Integer> s2 = s1.map((i)-> { System.out.println(i); return i+1; });
Object[] a = s2.toArray(); // <- here, the elements of the stream are needed

Streams are lazy! (2)

▪ What does this code print?

▪ It prints 1 // System.out.println for i=1

2 // System.out.println in forEach

2 // System.out.println for i=2

3 // System.out.println in forEach

...

because streams work like this:

1. forEach needs the first element of s2. To obtain the first element,
map is executed with the first element of the stream s1

2. forEach needs the second element of s2. To obtain the second
element, map is executed with the second element of the stream s1

3. ...

Stream<Integer> s1 = Stream.of(1,2,3,4,5);
Stream<Integer> s2 = s1.map((i)-> { System.out.println(i); return i+1; });
s2.forEach(System.out::println);

Streams are lazy (3)

▪ You should be now able to say what this code prints:

▪ Answer: It only prints “1”. Only the first element of the result is needed.

The variable 𝑛 will have the value 2 at the end.

Stream<Integer> s1 = Stream.of(1,2,3,4,5);
Stream<Integer> s2 = s1.map((i)-> { System.out.println(i); return i+1; });
int n=s2.findFirst().get(); // get first element of stream s2

Streams are lazy (4)

▪ Because streams are lazy, they can be also used in situations where it is

not known in advance how long the stream is.

▪ Example: print all lines of a text file in upper case:

▪ What this code does not do:

• Read the entire file, then print it.
That would use a lot of memory if the file is very big!

▪ What this code does do:

• Read the first line, print it, read the second line, print it,...

Stream<String> stream = Files.lines(Paths.get("somefile.txt"));
stream.map(String::toUpperCase).forEach(System.out::println);

returns a Stream<String> where

each element is a line from the file

Only once

▪ Note that you can only go once through the same stream. Once an

element has been processed, it is not possible anymore to access the

element again.

▪ This will not work:

Error: "stream has already been operated upon or closed"

Stream<Integer> stream = Stream.of(1,2,3,4,5);

int n = stream.reduce(0, (a,b)->a+b);

Stream<Integer> stream2 = stream.map((i)-> i+1);

