
Functional Programming in Java

Part 2

Last week: A list without side effects

class Cons {
public final int value; // value of the element
public final Cons next; // next element, null if end of list

public Cons(int value, Cons next) {
this.value = value;
this.next = next;

}

public Cons map(F f) { ... }

public Cons filter(P p) { ... }
}

Cons list1 = new Cons(5,new Cons(3,null)); // the list [5,3]

▪ Examples:

Implemented in

the exercise on

Inginious

Reminder: Exercise on INGInious

▪ In the INGInious exercises, we asked you to implement a map method

and a filter method for an immutable Cons list:

• The map method takes a function 𝑓: 𝑖𝑛𝑡 → 𝑖𝑛𝑡 and applies it to all
elements of a list. The result is a new list.

Example:

• The filter method takes a predicate 𝑝: 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 and applies it
to all elements of a list. The result is a new list with all elements for
which 𝑝 𝑥 = 𝑡𝑟𝑢𝑒.

Example:

Cons result = list.map((i)-> i+3);

Cons result = list.filter((i)-> i>3);

Problem of our Cons class

▪ Imagine we want to filter a list and then increment the elements:

Cons list = ... ;

Cons result = list.filter((i) -> i<5).map((i)-> i+3);

▪ We cannot write that!

• list.filter(someFilter) might return an empty list

• Since we represent empty lists by null, the method map would fail

▪ Correct code:

Cons filteredList = list.filter((i) -> i<5);

Cons result;

if(filteredList == null)

result = null;

else

result = filteredList.map((i)-> i+3);

Ugly... And we

have to do that

before every

list operation!

Possible

NullPointerException!

Problem of our Cons class (2)

▪ In last week’s lecture, I “cheated” by using a static method in the Cons

class:

▪ This method can be used on empty lists, but it’s still ugly and every

method working with lists would have to be implemented like that:

map, filter, length,...

public static Cons increment(Cons list) {
if(list==null)

return null;
else

return new Cons(list.value+3, increment(list.next));
}

A better list implementation

▪ Instead of using null, we can use an object to represent the empty list:

▪ How to use these classes:

• An empty list: FList list0 = new Nil();

• A list with one element: FList list1 = new Cons(3,list0);

• A list with two elements: FList list2 = new Cons(5,list1);

abstract class FList { }

class Nil extends FList { }

class Cons extends FList {
private FList next;
private int value;

public Cons(int value, FList list) {
this.value=value;
this.next=list;

}
}

Represents

the empty list

A better list implementation (2)

▪ Having no null references makes things easier. Here is a possible

implementation of the increment method:
abstract class FList {

public abstract FList increment();
}

class Nil extends FList {
public FList increment() {

return new Nil();
}

}

class Cons extends FList {
private FList next;
private int value;

public Cons(int value, FList list) {
this.value=value;
this.next=list;

}

public FList increment() {
return new Cons(value+3), next.increment());

}
}

Incrementing an empty

list returns an empty list

No ugly if(list==null)

anymore!

A better list implementation (3)

▪ If we implement the other methods (map, filter,...) like the increment

method, we can write without problems:

Cons result = list.filter((i) -> i<5).map((i) -> i+3);

▪ Have you noticed? This line of code is composed of operations that are

all functions (in the mathematical sense) without side effects:

• filter : 𝐹𝐿𝑖𝑠𝑡 × 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙𝑒𝑎𝑛 → 𝐹𝐿𝑖𝑠𝑡

• (i) -> i<5 : 𝑖𝑛𝑡 → 𝑏𝑜𝑜𝑙𝑒𝑎𝑛

• map : 𝐹𝐿𝑖𝑠𝑡 × 𝑖𝑛𝑡 → 𝑖𝑛𝑡 → 𝐹𝐿𝑖𝑠𝑡

• (i) -> i+3 : 𝑖𝑛𝑡 → 𝑖𝑛𝑡

▪ Therefore, we can see the entire line also as a function without side

effects: 𝐿𝑖𝑠𝑡 → 𝐿𝑖𝑠𝑡

▪ The result of this line of code only depends on the list variable. Very

easy to read!

The exercise on Inginious

▪ Two tricks used in the Inginious exercise (where you have to implement

an extended version of the FList class):

1. The Nil object can be implemented as a singleton. No need to have
multiple Nil objects!

2. The Nil and Cons classes have been moved into the FList class as
static nested classes. Nothing important, it’s just to make the code
organization cleaner!

public abstract class FList {

...

public static final class Nil extends FList {
...

}
}

