Locks



java.util.concurrent.locks

= Alock (fr. verrou) is a more flexible version of a synchronized statement

* The synchronized statement in

Object someObject = new Object();

Only one thread can enter.
Other threads have to wait
until the thread finishes the
synchronized statement.

void m() {
synchronized(someObject) {

}
}

is more or less equivalent to

private final ReentrantLock lock = new ReentrantLock();

public void m() {
lock.lock();

try {

Only one thread can lock().
Other threads have to wait
until the thread calls unlock()

} finally {
lock.unlock(); finally is used here to
ensure that unlock() is

always called

}



Locks vs Synchronized

" Locks are more general than synchronized statements
" For example, you can call lock() and unlock() in different places:
final ReentrantLock lock = new ReentrantLock();

private void lockMyList() {
lock.lock(); System.out.println("lock");
}

private void unlockMyList() {
lock.unlock(); System.out.println("unlock");

}

void add(int value) { void remove(int value) {
lockMyList(); lockMyList();
unlockMyList(); unlockMyList();

} }

" This makes the structure of your program more readable sometimes.

* Of course, this is dangerous. If you forget to call unlockMyList(), the
lock is never released!



Locks vs Synchronized (2)

* Another thing you cannot do with synchronized:
Test whether the lock is already locked by another thread

= Example:
if (lock.tryLock()) {

try {
} finally {
lock.unlock();

}
} else {

// don’t wait for the LocR.
// do something else

}

* The method tryLock()
e acquires the lock and returns true if it is open
* returns false if the lock is already locked by another thread



Again our photo application...

// Code for T1

while(true) {
Picture currentPicture = takePhoto();

synchronized(someObject) {
while(picture!=null) {

try {
someObject.wait();
}

catch(InterruptedException e) { throw new RuntimeException(“...", e); }

}

picture = currentPicture;

someObject.notify();
} [Our program is not very easy to understand because We\
} are using someObject for three things:
‘{, ﬁ ii°‘(’:rf°')‘ 12= 1. Make sure that the picture variable cannot be
bicture currentPicture; accessed by two threads at the same time
synchronized(someObject) { 2. Wait/notify when there is no picture (picture==null)

while(picture==null) { \3 Wait/notify when there is a picture (picture!=null) J

try {
someObject.wait();
}

catch(InterruptedException e) { throw new RuntimeException(*“...", e); }

}

currentPicture=picture;
picture=null;
someObject.notify();

}

CompressedPicture p=compress(currentPicture);
p.writeToFile();



Improved version with locks

(only the code for thread T1)

Picture picture;
final ReentrantLock lock = new ReentrantLock();
final Condition noPicture = lock.newCondition(); Old version without locks
final Condition havePicture = lock.newCondition();
Picture picture;

// New code for T1 Object someObject = new Object();

while(true) { // 01d code for T1
Picture currentPicture = takePhoto(); while(true) {
lock.lock(); Picture currentPicture = takePhoto();
try { synchronized(someObject) {
while(picture!=null) { while(picture!=null) {
try { try {
noPicture.await(); someObject.wait();
} }
catch(InterruptedException e) { catch(InterruptedException e) {
throw ... throw ...
} }
} }
picture = currentPicture; picture = currentPicture;
havePicture.signal(); someObject.notify();
} ¥
finally { }

lock.unlock();
}



Conditions

= Conditions work like wait()/notify():
e await(), signal(), signalAll() = wait(), notify(), notifyAll()
* you can also specify a timeout with await(...) (like wait(...))
* the thread must own the lock before it can use the condition

= Advantage of conditions over wait()/notify(): A lock can have more than
one condition (see example on the previous slide).

* Makes the program easier to understand

* signal() only wakes up those threads that are waiting for exactly that
condition.



