
Locks

java.util.concurrent.locks

▪ A lock (fr. verrou) is a more flexible version of a synchronized statement

▪ The synchronized statement in

is more or less equivalent to

Object someObject = new Object();

void m() {
synchronized(someObject) {

...
}

}

private final ReentrantLock lock = new ReentrantLock();

public void m() {
lock.lock();
try {

...
} finally {

lock.unlock();
}

}

Only one thread can lock().

Other threads have to wait

until the thread calls unlock()

Only one thread can enter.

Other threads have to wait

until the thread finishes the

synchronized statement.

finally is used here to

ensure that unlock() is

always called

Locks vs Synchronized

▪ Locks are more general than synchronized statements

▪ For example, you can call lock() and unlock() in different places:

▪ This makes the structure of your program more readable sometimes.

• Of course, this is dangerous. If you forget to call unlockMyList(), the
lock is never released!

final ReentrantLock lock = new ReentrantLock();

private void lockMyList() {
lock.lock(); System.out.println("lock");

}

private void unlockMyList() {
lock.unlock(); System.out.println("unlock");

}

void add(int value) {
lockMyList();
...
unlockMyList();

}

void remove(int value) {
lockMyList();
...
unlockMyList();

}

Locks vs Synchronized (2)

▪ Another thing you cannot do with synchronized:

Test whether the lock is already locked by another thread

▪ Example:

▪ The method tryLock()

• acquires the lock and returns true if it is open

• returns false if the lock is already locked by another thread

if (lock.tryLock()) {
try {

...
} finally {

lock.unlock();
}

} else {
// don’t wait for the lock.
// do something else

}

Again our photo application...

// Code for T2:
while(true) {

Picture currentPicture;
synchronized(someObject) {

while(picture==null) {
try {

someObject.wait();
}
catch(InterruptedException e) { throw new RuntimeException(“...", e); }

}
currentPicture=picture;
picture=null;
someObject.notify();

}

CompressedPicture p=compress(currentPicture);
p.writeToFile();

}

// Code for T1
while(true) {

Picture currentPicture = takePhoto();
synchronized(someObject) {

while(picture!=null) {
try {

someObject.wait();
}
catch(InterruptedException e) { throw new RuntimeException(“...", e); }

}
picture = currentPicture;
someObject.notify();

}
}

Our program is not very easy to understand because we

are using someObject for three things:

1. Make sure that the picture variable cannot be

accessed by two threads at the same time

2. Wait/notify when there is no picture (picture==null)

3. Wait/notify when there is a picture (picture!=null)

Improved version with locks

(only the code for thread T1)

// Old code for T1
while(true) {

Picture currentPicture = takePhoto();
synchronized(someObject) {

while(picture!=null) {
try {

someObject.wait();
}
catch(InterruptedException e) {

throw ...
}

}
picture = currentPicture;
someObject.notify();

}
}

// New code for T1
while(true) {

Picture currentPicture = takePhoto();
lock.lock();
try {

while(picture!=null) {
try {

noPicture.await();
}
catch(InterruptedException e) {

throw ...
}

}
picture = currentPicture;
havePicture.signal();

}
finally {

lock.unlock();
}

}

Picture picture;
final ReentrantLock lock = new ReentrantLock();
final Condition noPicture = lock.newCondition();
final Condition havePicture = lock.newCondition();

Picture picture;
Object someObject = new Object();

Old version without locks

Conditions

▪ Conditions work like wait()/notify():

• await(), signal(), signalAll() = wait(), notify(), notifyAll()

• you can also specify a timeout with await(...) (like wait(...))

• the thread must own the lock before it can use the condition

▪ Advantage of conditions over wait()/notify(): A lock can have more than

one condition (see example on the previous slide).

• Makes the program easier to understand

• signal() only wakes up those threads that are waiting for exactly that
condition.

