
Race conditions

Bad example

class Element {
int value;
Element next = null;
public Element(int v) { this.value=v; }

}
class List {

Element head = null;
void add(int value) {

Element newElement=new Element(value);
newElement.next=head;
head=newElement;

}
}

public static void main(String[] args) throws InterruptedException {
List list=new List();
Thread t1=new Thread(() -> list.add(3));
Thread t2=new Thread(() -> list.add(4));
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(list.head.value); // print first value
System.out.println(list.head.next.value); // print second value

}

Sometimes

NullPointerException

Two threads working in parallel

▪ What is happening in the example with the List?

▪ After we have created the list, we have a list object with head=null:

▪ Both threads try to add a new element to the list:

▪ What will happen?

list = {
Element head = null;

}

Thread 1:

Element newElement=new Element(3);
newElement.next=head;
head=newElement;

Thread 2:

Element newElement=new Element(4);
newElement.next=head;
head=newElement;

▪ Neither Java nor the operating system give any guarantees in what

order the two threads are executed

▪ Since both threads are running in parallel, it can happen that the order

of execution is overlapping or interleaved (fr. entrelacé). Example:

▪ Strange things happen if two threads work with the list head at the

same time. This is called a race condition.

Thread 2:

Two threads working in parallel (2)

Element thread2_newElement=new Element(4);

thread2_newElement.next=head;
head=thread2_newElement;

Thread 1 overwrites the

change made by thread 2!

Thread 1:

Element thread1_newElement=new Element(3);

thread1_newElement.next=head;

head=thread1_newElement;

Two threads working in parallel (3)

▪ Of course, the same problem can also appear if the two threads call

different methods:

▪ Imagine what could happen if the add-method and the remove-method

are executed in parallel by two threads

class List {
Element head;

void add(int value) {
Element newElement=new Element(value);
newElement.next=head;
head=newElement;

}

void remove() {
if(head!=null) {

head=head.next;
}

}
}

Another bad example

public class IncrementCounter {
private int counter=0; // both threads use the same counter

private void increment() {
for(int i=0;i<10000;i++) {

counter++;
}

}

public void test() throws InterruptedException {
Thread t1=new Thread(()->increment());
Thread t2=new Thread(()->increment());
t1.start(); t2.start();
t1.join(); t2.join();
System.out.println(counter);

}

public static void main(String[] args) throws InterruptedException {
new IncrementCounter().test();

}
}

Result is not 20000

Race condition

▪ Be careful: Race conditions can even happen in a single line of code

▪ A line like

i = i + 1; (“Bad example 1” from last week)

consists of three low-level instructions for your computer:

1. Read the value of variable 𝑖

2. Add 1 to that value

3. Store the result in variable 𝑖

▪ With two threads, the following can happen:

Read the value of variable 𝑖

Add 1 to that value

Store the result in variable 𝑖

Read the value of variable 𝑖
Add 1 to that value

Store the result in variable 𝑖

Thread 1 Thread 2

Thread 1 overwrites the

change made by thread 2!

Monitors

Monitor

▪ We must prevent that a thread changes a variable or an object while

another thread tries to use (or change) it

▪ In Java, every object can have a monitor. A monitor helps to prevent

that threads execute a given section of code at the same time.

▪ Example:

synchronized(list) {

list.add(3);

}

With the synchronized statement,

a thread becomes the owner of

the monitor of the list object. The

thread can enter the block.

Only one thread can be owner of the

monitor of an object at a given time. If

another thread wants the monitor, it must

wait until the monitor is free.

At the end of the

synchronized statement,

the owner of the monitor

releases it. A waiting

thread can now get the

monitor.

The block inside the

synchronized statement

is called a critical section.

Synchronized execution

Thread t1=new Thread(() -> {

synchronized(list) {
list.add(3);

}

});

Thread t2=new Thread(() -> {

synchronized(list) {
list.add(4);

}

});

▪ Note: In this example, we have assumed that thread 1 first enters the

critical section. It can also happen that thread 2 enters first. Then

thread 1 would have to wait.

Thread 1 becomes the

owner of the monitor of

the list object and can

continue

Thread2 must wait until

thread 1 leaves the

synchronized-block

Objects for monitors

▪ Threads can use any object’s monitor for synchronization. It can be even

an object specifically created for that purpose. Of course, both threads

must use the same object to synchronize:

List list=new List();
Object someObjectForSynchronization=new Object()

Thread t1=new Thread(() -> {
synchronized(someObjectForSynchronization) {

list.add(3);
}

});

Thread t2=new Thread(() -> {
synchronized(someObjectForSynchronization) {

list.add(4);
}

});

Where to put the synchronized statement

▪ Instead of using a synchronized statement at every caller of the add method,

it’s easier to put it directly inside the add method:

▪ Often, people simply use the object of the method for the synchronization:

void add(int value) {
Element newElement=new Element(value);
synchronized(someObjectForSynchronization) {

newElement.next=head;
head=newElement;

}
}

void add(int value) {
Element newElement=new Element(value);
synchronized(this) {

newElement.next=head;
head=newElement;

}
}

Synchronized method

▪ It’s also possible to mark the entire method as “synchronized”:

▪ That’s (mostly) equivalent to:

▪ In a synchronized method, the entire method body is synchronized. This

is often useful, but in our example it’s not necessary to put the Element

construction inside the critical section

▪ Only use synchronization where needed! If everything is synchronized,

why using threads?

synchronized void add(int value) {
Element newElement=new Element(value);
newElement.next=head;
head=newElement;

}

void add(int value) {
synchronized(this) {

Element newElement=new Element(value);
newElement.next=head;
head=newElement;

}
}

can be moved

outside the

critical section

Classes in java.util.*

▪ Most data structures in java.util.* are not thread-safe: race conditions

can happen!

• ArrayList, LinkedList, HashSet, PriorityQueue, HashMap,...

▪ If you want to work with these classes from multiple threads, you have

to use synchronized-statements in your code

▪ But there already a lot of helper classes and methods that you can use:

// creates a thread-safe map

Map m = Collections.synchronizedMap(new HashMap(...));

// creates a thread-safe list

List list = Collections.synchronizedList(new LinkedList(...));

▪ There are many other methods to create thread-safe sets,

queues, etc.

How does
Collections.synchronizedList work?
▪ The method synchronizedList in

List list = Collections.synchronizedList(new LinkedList(...));

returns an object of type SynchronizedList

▪ SynchronizedList is a wrapper class (a design pattern!). It doesn’t contain

any data. It just wraps thread-safe methods “around” a normal list object:

class SynchronizedList {
final List list;
final Object mutex = new Object();

SynchronizedList(List list) {
this.list = list;

}

public void add(int index, E element) {
synchronized (mutex) {

list.add(index, element);
}

}
...

}

mutex = “Mutual

exclusion”

