
Working with Threads

Creating new threads

▪ A process (=a running program) has one main thread that starts at the

main() method

▪ But a process can also create new threads that run in parallel

public static void main(String[] args) {

Thread t = new Thread(() -> {
System.out.println(“Hello world");
String name = "This is "+Thread.currentThread().getName();
System.out.println(name);

}, "My new thread");

t.start();

int name = "This is "+Thread.currentThread().getName();
System.out.println(name);

}

The Thread

constructor takes a

Runnable interface

with a single method

The name of the new

thread (optional

argument)

Program execution by two threads

Thread t = new Thread(() -> { ... }, "My new thread");

t.start();

int name = "This is "+Thread.currentThread().getName();
System.out.println(name);

Main thread

Main thread

ends here

System.out.println(“Hello world"
int name = "This is "+Thread.
System.out.println(name);

Second thread

ends here

▪ A process ends if all its threads have ended

My new thread

Creating threads (different style)

▪ You often see programmers putting the code for a new thread in a

separate class to make it more readable. This is useful if each thread

needs its own data. In this example, each thread has a MyThread object:

class MyThread implements Runnable {
private String text;

public MyThread(String text) {
this.text = text;

}
@Override
public void run() {

System.out.println(text);
}

}

Thread t1=new Thread(new MyThread("Hello"));
t1.start();

Thread t2=new Thread(new MyThread("World"));
t2.start();

Waiting for threads to finish

▪ Sometimes, you want that a thread waits until another thread has finished

public static void main(String[] args) {
Thread t = new Thread(() -> {

try {
Thread.sleep(5000);

}
catch(InterruptedException e) {

throw new RuntimeException("Unexpected interrupt", e);
}
System.out.println("New thread has finished its work");

});
t.start();

System.out.println("This is the main thread");

try {
t.join();

}
catch(InterruptedException e) {

throw new RuntimeException("Unexpected interrupt", e);
}

System.out.println("All threads have finished");
}

Doing nothing

interesting. Just

sleeping

5000ms

The main thread

waits until the

new thread has

finished

sleep() and join() can

throw an

InterruptedException.

This happens if the

thread is interrupted by

something

Waiting for threads to finish (2)

▪ You can specify how long you want to wait for a thread to finish:

t.join(10000); // wait 10 seconds maximum
// check whether the thread has finished:
if(t.isAlive()) {

// the other thread is still running (or not yet started)
}

Why using threads?

Threads can be useful in two situations:

1. You want to do something that will probably take a lot of time and you

don’t want to block the rest of the program

2. You want to speed up computation

Use threads for non-blocking operations

▪ Bad:

▪ Good:

JButton button=new JButton("Press me!");
button.addActionListener(

(ActionEvent e) ->
...do something that takes a lot of time (for example reading a file)...

);
frame.add(button);

JButton button=new JButton("Press me!");
button.addActionListener(

(ActionEvent e) ->
...create a thread to do something that takes a lot of time...

);
frame.add(button);

The entire window will

freeze until the function has

completed!

Use threads to speed-up computation

▪ Example: Sum of all natural numbers from 1 to 1000:

▪ The calculation can be divided into two parts:

int sum = 0;
for(int i=1; i<=1000; i++) {

sum+=i;
}

int sum1 = 0;
for(int i=1; i<=500; i++) {

sum1+=i;
}

int sum2 = 0;
for(int i=501; i<=1000; i++) {

sum2+=i;
}

int sum = sum1+sum2;

These two parts are

independent of each

other

Adding numbers with threads

class Sum implements Runnable {
final int a,b;
int sum;

public Sum(int a, int b) { this.a = a; this.b = b; }

public void run() {
for(int i=a;i<=b;i++) {

sum += i;
}

}
}

public static void main(String[] args) throws InterruptedException {
Sum s1 = new Sum(1,500);
Sum s2 = new Sum(501,1000);
Thread t1 = new Thread(s1); // create two threads
Thread t2 = new Thread(s2);

t1.start(); t2.start(); // start both threads
t1.join(); t2.join(); // wait until both threads have finished
int sum = s1.sum + s2.sum;

}

How many threads do we need?

▪ We could use 100 threads instead of 2 to calculate the sum from 1 to

1000. Does that mean our program becomes 100 times faster?

▪ No. On a modern computer, creating a simple thread (without any extra

objects) takes around 0.05-0.1 ms. That’s approximately the time to

calculate the sum from 1 to 100 000.

▪ Conclusion: Threads only improve the speed of a program if the tasks

for the threads are longer than the overhead to create and manage

them

Futures and thread pools

Futures

▪ Our Sum class is an example for a Runnable that gives a result: the sum

of the natural numbers from 𝑎 to 𝑏

▪ This is a very typical pattern. In Java, a Runnable that calculates a result

is called a Future

▪ Of course, there are already some packages that help you working with

Futures ☺

class Sum implements Runnable {
final int a,b;
int sum; // <- the result of the Runnable

public Sum(int a, int b) { this.a = a; this.b = b; }

public void run() {
for(int i=a;i<=b;i++) {

sum += i;
}

}
}

Working with java.util.concurrent.Future

public static int calculate(int a, int b) {
int sum = 0;
for(int i=a;i<=b;i++) {

sum += i;
}
return sum;

}

public static void main(String[] args)
throws ExecutionException, InterruptedException {

ExecutorService executor = Executors.newFixedThreadPool(2);

Future<Integer> f1 = executor.submit(()-> calculate(1,500));
Future<Integer> f2 = executor.submit(()-> calculate(501,1000));

int sum = f1.get() + f2.get();
executor.shutdown();

}

This is a thread pool.

It has two threads that

are waiting for work.

We give the threadpool two

tasks to do.Future.get() waits

until the thread has

finished.

Future.get() throws an

InterruptedException if interrupted while

waiting or an ExecutionException if there

was a problem in the calculation.

How do thread pools work?

▪ A thread pool is a group of threads that are ready to work. In our

example, we have created a threadpool with two threads:

▪ Threads in threadpool are like chefs in the kitchen of a restaurant

waiting for orders. If you submit a task to the pool, one of the threads

will take the task and it will immediately start working on it:

▪ You can submit more tasks, but they will wait until one of the previous

tasks has finished:

ExecutorService executor = Executors.newFixedThreadPool(2);

Future<Integer> f1 = executor.submit(...); // executed by thread 1
Future<Integer> f2 = executor.submit(...); // executed by thread 2

Future<Integer> f1 = executor.submit(...); // executed by thread 1.
Future<Integer> f2 = executor.submit(...); // executed by thread 2.
Future<Integer> f3 = executor.submit(...);
// the submit method returns immediate, but the execution of f3 will
// wait until f1 or f2 is finished

How do thread pools work? (2)

▪ You can get the result of a future with get():

If the task is not yet finished, the method get() will wait.

▪ When you don’t need the thread pool anymore, you have to shut it

down to stop all its threads:

executor.shutdown();

f1.get()

