
Visibility, deadlocks, and more

// Code for T2:
while(true) {

Picture currentPicture;
synchronized(someObject) {

while(picture==null) {
try {

someObject.wait();
}
catch(InterruptedException e) { throw new RuntimeException(“...", e); }

}
currentPicture=picture;
picture=null;
someObject.notify();

}

CompressedPicture p=compress(currentPicture);
p.writeToFile();

}

wait() and notify()

// Code for T1
while(true) {

Picture currentPicture = takePhoto();
synchronized(someObject) {

while(picture!=null) {
try {

someObject.wait();
}
catch(InterruptedException e) { throw new RuntimeException(“...", e); }

}
picture = currentPicture;
someObject.notify();

}
}

Wait until

picture==null

Notify other waiting

thread that picture is

now !=null

Wait until

picture!=null

Notify other waiting

thread that picture is

now ==null

Waiting with timeout

▪ Sometimes, you want to limit the time to wait (BoundedBuffer exercise

on inginious):

▪ The thread stops waiting if:

• another thread calls notify() or notifyAll()

• the time is over

• the waiting is interrupted (InterruptedException)

▪ Don’t forget to test after waiting if the condition you were waiting for is

satisfied.

someObject.wait(2000); // wait maximum 2000ms

Visibility

▪ The synchronized statement also does something else: It guarantees

the visibility of data modifications to threads

▪ Incorrect example:

▪ Will thread 1 terminate?

▪ We don’t know! In Java, it is not guaranteed that thread 1 sees

modifications made by thread 2 unless thread 1 and thread 2 synchronize

(for example with a synchronized statement)

someObject.b=true;
...
while(someObject.b) {

...
}

Thread 2

someObject.b=false;

Thread 1

Visibility (2)

▪ Using a synchronized statement is one way to ensure the visibility of

modifications

▪ It is also possible to declare a class member as volatile:

▪ When a class member is volatile, Java guarantees that a thread reading

the variable

will see all previous modifications by other threads

class SomeClass {
volatile boolean b;

}

Example: while(someObject.b) { ...

Example: someObject.b=false;

Deadlocks

▪ A thread can own more than one monitor. But be careful with

deadlocks!
Object obj1=new Object();
Object obj2=new Object();
Thread t1=new Thread(() -> {

synchronized(obj1) {
try {

Thread.sleep(1000);
}
catch(InterruptedException e) {
}
synchronized(obj2) {
}

}
});
Thread t2=new Thread(() -> {

synchronized(obj2) {
synchronized(obj1) {
}

}
});

t1.start(); t2.start();
t1.join(); t2.join();

Thread 1 gets monitor of obj1

Thread 1 and thread 2 block

each other. They can’t finish.

Deadlock!

Thread 2 gets monitor of obj2

Thread 1 waits for monitor of obj2

Thread 2 waits for monitor of obj1

▪ How can a computer execute multiple threads at the same time? Why

don’t threads see modifications made by other threads?

• LINFO1252: Systèmes informatiques

• LINGI2241: Computer architecture and performance

• LINGI2355: Multicore programming

▪ How do you design algorithms and programs with threads? How can

you prove that a program with multiple threads works correctly?

• LINFO1104: Paradigmes de programmation et concurrence

• LINGI2143: Concurrent systems : models and analysis

• LSINF2345: Languages and algorithms for distributed applications

