
The Visitor Design Pattern



class Engine extends CarElement {
private int hp;

public Engine(int hp) { this.hp=hp; }

public int getHP() { return hp; }
@Override
public int getPrice() { return hp*100; }

}

Let’s start with a simple example

public abstract class CarElement {
public abstract int getPrice();

}

class Wheel extends CarElement {
@Override
public int getPrice() { return 100; }

}

class Car {
private Engine engine=new Engine(90);
private Wheel[] wheels=new Wheel[] {

new Wheel(), new Wheel(), new Wheel(), new Wheel()
};

}

A car is built from

several CarElement

objects



class Wheel extends CarElement {
@Override
public int getPrice() { return 100; }
@Override
public void print() { System.out.println("A wheel"); }

}

class Engine extends CarElement {
private int hp;

public Engine(int hp) { this.hp=hp; }

public int getHP() { return hp; }
@Override
public int getPrice() { return hp*100; }
@Override
public void print() { System.out.println("Engine with "+hp+" hp"); }

}

Print a description of the car

public abstract class CarElement {
public abstract int getPrice();
public abstract void print();

}

We add a print() 

method to the car

elements



Print a description of the car (2)

class Car {
private Engine engine=new Engine(90);
private Wheel[] wheels=new Wheel[] {

new Wheel(), new Wheel(),
new Wheel(), new Wheel()

};

public void print() {
System.out.println(“A car”);
engine.print();
wheels[0].print();
wheels[1].print();
wheels[2].print();
wheels[3].print();

}
}

To print a description

of the car, the car

prints the car

elements

▪ Okay, that works. No problem here. But it’s a little bit annoying that we 

have to modify the Car and CarElement classes to be able to print 

them...



Calculating the price of a car

▪ Again, that works. And again, it’s a little bit annoying that we have to 

modify the Car class to add this new functionality

▪ Is it really necessary that the Car class should know how to print a car

and how to calculate the price of a car? Do we have to modify the

classes everytime we want a new functionality?

class Car {
private Engine engine=new Engine(90);
private Wheel[] wheels=new Wheel[] {

new Wheel(), new Wheel(),
new Wheel(), new Wheel()

};

public void printCar() {
engine.print();
wheels[0].print(); wheels[1].print(); wheels[2].print(); wheels[3].print();

}

public int getCarPrice() {
return engine.getPrice()+wheels[0].getPrice()+wheels[1].getPrice()

+wheels[2].getPrice()+wheels[3].getPrice();
}

}



Making everything public?

▪ We could move the printCar() and getCarPrice() methods into a 

different class. But that requires that the fields of the car are public: 

class Car {
public Engine engine=new Engine(90);
public Wheel[] wheels=new Wheel[] {

new Wheel(), new Wheel(),
new Wheel(), new Wheel()

};
}

class CarTools {
public void printCar(Car car) {

car.engine.print();
car.wheels[0].print(); car.wheels[1].print();
car.wheels[2].print(); car.wheels[3].print();

}

public int getCarPrice(Car car) {
return car.engine.getPrice()+car.wheels[0].getPrice()+...

}
}

Not nice!

Now, everybody can

see how a car object

is implemented

internally.



The Visitor Design Pattern

▪ In the Visitor design pattern, complex data structures (like the Car class) 

allow “visitors” to visit their elements.

▪ Visitors can do work (like printing, calculating the price,...) that we don’t 

want to put into the Car class. Here is a visitor printing the car description:

public interface Visitor {
public void visit(Wheel wheel);
public void visit(Engine engine);
public void visit(Car car);

}

public class PrintVisitor implements Visitor {
@Override
public void visit(Wheel wheel) { System.out.println("A wheel"); }

@Override
public void visit(Engine engine) {

System.out.println("Engine with "+engine.getHP()+" hp");
}

@Override
public void visit(Car car) { System.out.println("A car"); }

}



class Engine extends CarElement implements Visitable {
private int hp;
public Engine(int hp) { this.hp=hp; }
public int getHP() { return hp; }
@Override
public int getPrice() { return hp*100; }
@Override
public void accept(Visitor visitor) {

visitor.visit(this);
}

}

The Visitor Design Pattern (2)

▪ Every object visited by the visitor decides what to do with the visitor:

public interface Visitable {
public void accept(Visitor visitor);

}

class Wheel extends CarElement implements Visitable {
@Override
public int getPrice() { return 100; }
@Override
public void accept(Visitor visitor) {

visitor.visit(this);
}

}

A wheel does not 

know what a visitor

does. It just 

“accepts” the 

visitor.

This will print “A wheel”

This will print

“Engine with 90 hp”



The Visitor Design Pattern (3)

▪ We can now print the car description for a car object:

car.accept(new PrintVisitor());

▪ Note:

• The Visitor does not need to know how a car is structured internally

• The visited car does not need to know how to print a description

class Car implements Visitable {
private Engine engine=new Engine(90);
private Wheel[] wheels=new Wheel[] {

new Wheel(), new Wheel(),
new Wheel(), new Wheel()

};

@Override
public void accept(Visitor visitor) {

visitor.visit(this);
engine.accept(visitor);
wheels[0].accept(visitor);
wheels[1].accept(visitor);
wheels[2].accept(visitor);
wheels[3].accept(visitor);

}
}

This will print “A car”

Here, we send the

visitor to the car

elements



Another visitor for price calculation

▪ We can implement the price calculation also as a visitor:

▪ And we can use the PriceVisitor to calculate the price of a car:

car.accept(new PriceVisitor());

▪ Again, the visitor does not need to know how a car is structured

internally. It doesn’t even know how many wheels a car has!

public class PriceVisitor implements Visitor {
int totalPrice=0;

@Override
public void visit(Wheel wheel) { totalPrice+=wheel.getPrice(); }
@Override
public void visit(Engine engine) { totalPrice+=engine.getPrice(); }
@Override
public void visit(Car car) { }

}



Visitors: Summary

▪ Visitors are a way to separate the structure of an object from the code 

working on that object

• Visited object = the object containing the data of interest

• Visitor = the code working on the data

▪ In our examples, we can

• modify the structure of the car without having to modify the
PrintVisitor or the PriceVisitor

• We could add more wheels (6 instead of 4)

• We could store the wheels in a list instead of an array

• ...

• create new visitors without having to modify the Car and CarElement
classes


