
More tools for concurrent programming



Concurrent programming

▪ Concurrent programming = programming with multiple threads or

processes

▪ As we have seen, it’s easy to make mistakes. Therefore, computer 

scientists have developed “standard solutions” for many typical 

situations

▪ Note: All the examples we see on the next slides could be also 

implemented with synchronized/wait()/notify()



Read/Write locks

▪ A ReadWriteLock is a lock where multiple threads can read data at the

same time if there is no thread writing data

class ReadWriteDictionary<E> {
private final HashMap<String, E> m = new HashMap<String, E>();
private final ReentrantReadWriteLock rwl = new ReentrantReadWriteLock();
private final Lock r = rwl.readLock();
private final Lock w = rwl.writeLock();

public E get(String key) {
r.lock();
try {

return m.get(key);
}
finally {
r.unlock();

}
}

public E put(String key, E value) {
w.lock();
try {

return m.put(key, value);
}
finally {

w.unlock();
}

}
}

To read from the

hashmap, the thread

needs a read-lock

To write to the hashmap, the

threads needs a write-lock. The 

thread has to wait until all read-

locks are released.

Many threads are allowed to get a read-lock 

at the same time.

However, if one thread gets a write-lock, all 

other threads must wait.



Semaphore

▪ A Semaphore is like a lock. However, 𝑛 threads are allowed to enter a 

semaphore at the same time. (𝑛 = 1 → normal lock)

public class SemaphoreTest {
private LinkedList<Hammer> hammers = new LinkedList<Hammer>(

Arrays.asList(new Hammer(), new Hammer(), new Hammer()));
private final Semaphore available = new Semaphore(3, true);

public Hammer getHammer() throws InterruptedException {
available.acquire();
synchronized(hammers) {

return hammers.remove();
}

}

public void giveBackHammer(Hammer hammer) {
synchronized(hammers) {

hammers.add(hammer);
}
available.release();

}
}

A semaphore with

three permits (𝑛 = 3)

Ask a permit from the

semaphore. If there is no

permit available, the

thread waits

Give permit back



Barriers

▪ Let’s imagine you have 1000 ideas for a Christmas present for your 

friend

▪ You only want to buy one present. You don’t want to necessarily buy 

the cheapest one, but it must cost less than 100 Euros.

• For each idea 𝑋, you can buy it on Amazon or on eBay. Of course, 
you want to buy at the shop where 𝑋 is the cheapest.

▪ Idea for the implementation:

1. Take first idea. Check prices on Amazon and on eBay. Stop the 
search and buy it if the price is less than 100 Euros.

2. Take second idea. Check prices on ....

3. ...

▪ To be fast, we want to do the search on Amazon and eBay in parallel



Barriers (2)

▪ Algorithm:

For each present idea 𝑋 ∈ {𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑖𝑑𝑒𝑎𝑠}:

1. Thread t1 finds price 𝐴 of 𝑋 on Amazon

2. Thread t2 finds price 𝐵 of 𝑋 on eBay

3. Wait until both threads have found the price

4. Stop if min 𝐴, 𝐵 ≤ 100

▪ Step 3 is called a barrier: The algorithm can only continue if both

threads have finished

▪ This could be implemented with a for-loop and Futures. But then we

have to create new futures for every present idea.

• An algorithm where we have to repeatedly wait for 𝑛 threads to
finish can be implemented with java.util.concurrent.CyclicBarrier

• (If we want to wait only once for 𝑛 threads, then we can use
java.util.concurrent.CountDownLatch)

ቅ in parallel



Implementation with CyclicBarrier
public class ChristmasPresents {

CyclicBarrier barrier;
int amazonPrice;
int ebayPrice;
boolean presentFound = false;
int i = 0;
String[] presentIdeas=new String[] { "Idea 1", "Idea 2","..."};

class AmazonSearch implements Runnable {  // similar code for EbaySearch
public void run() {

while(!presentFound) {
amazonPrice = findAmazonPrice(presentIdeas[i]);
try {

barrier.await();
} catch (InterruptedException ex) {

return;
} catch (BrokenBarrierException ex) {

return;
}

}
}

}

public void findBestPresent() {
barrier = new CyclicBarrier(2, ()->{

if(amazonPrice<=100 || ebayPrice<=100)
presentFound=true;

else
i++;  // check next present

});
Thread t1=new Thread(new AmazonSearch());
Thread t2=new Thread(new EbaySearch());
t1.start(); t2.start();
t1.join(); t2.join();

}
}

await() blocks the

thread until both

threads have called

await()

This is a barrier to

synchronize two

threads

This lambda

expression is

executed everytime

both threads have

called await().



Futures and Threadpools

▪ We have already seen how to use Futures and Threadpools

▪ Internally, this is implemented in the Java library like this:

▪ This is easy to implement but not very efficient if you have an algorithm

where the futures can create new futures

• Example: A recursive sorting algorithm like Quicksort. A future
divides the list in two and creates two futures for each part of the list

→ Lot of waiting for synchronization at the add/remove methods of the

queue

Queue 

with

waiting

futures
Threads working

on futures

submit

task
Results



java.util.concurrent.ForkJoinPool

▪ In a ForkJoinPool, every thread in the threadpool has its own queue

▪ There is still a central queue

▪ When a thread creates a new task it is placed in its own queue

▪ When a threads looks for a task to execute it will

• first, look in its own queue

• second, look in the queues of other threads (this is called “stealing”)

• finally, look in the central queue

Central 

queue

Threads

submit

task



How to use ForkJoinPool

▪ Tasks in a ForkJoinPool are of type ForkJoinTask<R> where R is the type 

of the result of computation (ForkJoinTask is a subclass of Future)

▪ In the exercise in Java, you will work with a special subclass of

ForkJoinTask:  the RecursiveAction class. It’s a task without result (void)

▪ Example:

• We want to increment all elements of an array by 1

• We first create a task to increment all elements from 0 to length-1 
and give it to the ForkJoinPool:

int[] array = new int[]{ 1,2,3,4,5,6,7,8,9,10,11,12};

ForkJoinPool pool = new ForkJoinPool(3);

pool.invoke(new IncrementTask(array,0,array.length));

a pool 

with three

threads

invoke() submits the task

to the pool and waits until

the task has finished



How to use ForkJoinPool (2)

▪ Here is the implementation of the task to increment the elements

[lo..hi] of an array:
class IncrementTask extends RecursiveAction {

final int[] array;
final int lo, hi;

IncrementTask(int[] array, int lo, int hi) {
this.array = array; this.lo = lo; this.hi = hi;

}

@Override
public void compute() {

if (hi - lo < 5) {
for (int i = lo; i < hi; ++i)

array[i]++;
}
else {

int mid = (lo + hi)/2;
invokeAll(new IncrementTask(array, lo, mid),

new IncrementTask(array, mid, hi));
}

}
}

the compute() 

method defines the

work to do for the

RecursiveAction

Here we create two

new tasks for the

elements [lo,mid] 

and [mid,hi]

If the task is very small

(less than 5 elements

to increment), we do it

here

invokeAll() submits

new tasks and waits

until they have

finished


